Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Large datasets contribute new insights to subjects formerly investigated by exemplars. We used coevolution data to create a large, high-quality database of transmembrane β-barrels (TMBB). By applying simple feature detection on generated evolutionary contact maps, our method (IsItABarrel) achieves 95.88% balanced accuracy when discriminating among protein classes. Moreover, comparison with IsItABarrel revealed a high rate of false positives in previous TMBB algorithms. In addition to being more accurate than previous datasets, our database (available online) contains 1,938,936 bacterial TMBB proteins from 38 phyla, respectively, 17 and 2.2 times larger than the previous sets TMBB-DB and OMPdb. We anticipate that due to its quality and size, the database will serve as a useful resource where high-quality TMBB sequence data are required. We found that TMBBs can be divided into 11 types, three of which have not been previously reported. We find tremendous variance in proteome percentage among TMBB-containing organisms with some using 6.79% of their proteome for TMBBs and others using as little as 0.27% of their proteome. The distribution of the lengths of the TMBBs is suggestive of previously hypothesized duplication events. In addition, we find that the C-terminal β-signal varies among different classes of bacteria though its consensus sequence is LGLGYRF. However, this β-signal is only characteristic of prototypical TMBBs. The ten non-prototypical barrel types have other C-terminal motifs, and it remains to be determined if these alternative motifs facilitate TMBB insertion or perform any other signaling function.more » « less
-
Abstract Structural information of protein–protein interactions is essential for characterization of life processes at the molecular level. While a small fraction of known protein interactions has experimentally determined structures, computational modeling of protein complexes (protein docking) has to fill the gap. TheDockgroundresource (http://dockground.compbio.ku.edu) provides a collection of datasets for the development and testing of protein docking techniques. Currently,Dockgroundcontains datasets for the bound and the unbound (experimentally determined and simulated) protein structures, model–model complexes, docking decoys of experimentally determined and modeled proteins, and templates for comparative docking. TheDockgroundbound proteins dataset is a core set, from which otherDockgrounddatasets are generated. It is devised as a relational PostgreSQL database containing information on experimentally determined protein–protein complexes. This report on theDockgroundresource describes current status of the datasets, new automated update procedures and further development of the core datasets. We also present a newDockgroundinteractive web interface, which allows search by various parameters, such as release date, multimeric state, complex type, structure resolution, and so on, visualization of the search results with a number of customizable parameters, as well as downloadable datasets with predefined levels of sequence and structure redundancy.more » « less
An official website of the United States government
